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Abstract.
To construct finite-volume methods for PDEs in arbitrary dimension to arbitrary accuracy in

the presence of irregular boundaries, we show that estimates of moments, integrals of monomials,
over various regions are all that are needed. If implicit functions are used to represent the
irregular boundary, the needed moments can be computed straightforwardly and robustly by
using the divergence theorem, Taylor expansions, least squares, recursion, and 1D root finding.
Neither a geometric representation of the irregular boundary nor its interior is ever needed or
computed. The implicit function representation is general and robust. Implicit functions can
be combined via constructive solid geometry to form complex boundaries from a rich set of
primitives including interpolants of sampled data, for example, 2D/3D image data and digital
elevation maps.

1. Finite-volume methods and flux computations

The overall goal of this work is to numerically compute solutions to PDE on domains with
irregular boundaries in an arbitrary dimension Cartesian space, R

D, to an arbitrary accuracy
by using finite-volume methods [1]. The PDE are written as conservation laws that contain a
divergence of a “flux”, ∇ · F , for example,

∇ · β(∇u) = ρ, F (u) = β(∇u) (Elliptic PDE)

∂u

∂t
= ∇ · ρ(∇u), F (u) = ρ(∇u) (Parabolic PDE)

∂u

∂t
+∇ · F (u) = S(u), F (u) is given. (Hyperbolic PDE)

The PDE are solved on a discretization of an irregular domain, Ω, defined implicitly using an
“implicit” function, φ : R

D → R, namely,

Ω = {x : x ∈ R
D, φ(x) < 0}. (1)

Implicit functions are chosen to represent Ω for several reasons:

• The implicit function, φ(x), is defined everywhere in R
D, and thus Taylor expansions of φ

and functions of φ (e.g., n(x) = ∇φ(x)/|∇φ(x)|) can be computed anywhere they exist if
φ is smooth enough.
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(a) Polynomial function of three variables (b) SF Bay digital elevation map data

Figure 1. Domains generated via an implicit functions.

• Implicit functions can be used to represent a rich set of geometric shapes (see figure 1)
either in functional form or as interpolants of discrete, sampled data (e.g., 2D/3D image
data [3, 4, 5], digital elevation maps).

• Implicit functions can be easily restricted to lower dimensions. This is exploited in the
algorithm that computes moments (see Section 2).

• Implicit functions can be extended to arbitrary dimensions allowing computations to be
done in phase spaces or space-time.

• Ω can implicitly evolve in time if φ is allowed to change with time, possibly as a function
of other PDE variables or time directly.

In this embedded boundary approach, Ω will be discretized on a set of control volumes, V,
formed by intersecting rectangular cells with Ω:

V = {[ih, (i + e)h] ∩ Ω : i ∈ Z
D}, (2)

where e ∈ Z
D and all its components are one and h is the size of the rectangular cells that are,

in this case, square.
Given this formulation, the integral of the divergence of the vector field, ∇ · F , over the

control volume, V ∈ V, can be transformed by using the divergence theorem into an integral
over the boundary of the volume, A = ∂V :

∫

V

∇ · F dV =

∫

A

F · n dA (3)

where n is the normal to A pointing out of V . In control volumes that do not intersect the
boundary of Ω, this can be rewritten as Ad−: F− · n = −F d− on the low faces and as Ad+:

F + · n = F d+ on the high faces by noting that on the faces the normal points in a coordinate
direction, d. The result is the canonical “(sum of) difference in fluxes (integrated over faces)”
formulation of finite volume methods. These methods are as accurate as the approximations to
integrals of F d± over the faces.
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With these definitions, a finite-volume method for control volumes containing embedded
boundaries can be defined by using the divergence theorem:

∫

V

∇ · F dV =
∑

± = +,−

D
∑

d=1

±

∫

Ad

±

F d± dA +

∫

AEB

F · nEB dA, (4)

where Ad± = {x : x ∈ V, xd = (id + 1
2 ± 1

2 )h}, AEB = V ∩ ∂Ω, and nEB = ∇φ/|∇φ|. Note: nEB

is defined everywhere in Ω and not simply on ∂Ω. This equation has still not been discretized;
that is, it is exact. The integrals over the boundary are discretized by using an P th order Taylor
expansion of F and F d± about points xEB ∈ AEB and xd± ∈ Ad± that approximate the centroids
of the domains of integration. In addition, we can expand nEB about some point in the cell
(which we take to be the origin of our coordinates), since it is a known smooth function. Using
these Taylor expansions, we can rewrite equation (4) as follows:

∫

V

∇ · F dV =
∑

0≤|p|≤P

1

p!

(

∑

± = +,−

D
∑

d=1

± (∇pF d±)

∫

Ad
±

(x − xd±)r dA

+ ∇pF ·
∑

0≤|r|≤R

∇rnEB

r!

∫

AEB

(x − xEB)pxr dA

)

+O(hD+P+R.) (5)

Assuming F is discretized on the rectangular grid covered by Ω, one can approximate ∇pF d
±

and ∇rF to the appropriate order by finite differences. The remaining information required is
in the form of moments, namely, integrals of polynomials computed over the V , Ad±, and AEB.

Note that xd± and xEB can also be computed from moments. Computing these is the analogue of
grid generation for the embedded boundary method. No explicit representation of the irregular
boundary is ever needed.

2. Moment computations

Approximating the needed moments to the necessary order can be accomplished by taking all
monomials, xp, of a given degree, P , where p is a multi-index and |p| = P , and substituting
F (x) = xped into equation (4), where ed is the unit vector in direction d. Note that
∂xp/∂xd = pdx

p−ed and replacing nEB by its Taylor expansion; then each monomial yields
the set of D equations defined by

pd

∫

V

xp−ed dV − nd

∫

AEB

xp dA =
∑

± = +,−

±

∫

Ad

±

xp dA

+
∑

1≤|r|≤R

(

∇rnd
r!

∫

AEB

x(p+r) dA

)

+O(hD+P+R) (6)

If the integrals on the LHS are treated as unknowns and the RHS is treated as known, then
the set of equations formed in this way for all monomials xp where |p| = P forms a system
of linear equations. The number of unknowns is NP−1 + NP (where NP is the number of
monomials of degree P ) and number of equations is DNP . Since NP−1 < NP , if D ≥ 2, this is
an overdetermined system and can be solved by least squares. The one-dimensional case can be
solved explicitly by using 1D root-finding techniques and integration of monomials (see below).

Examining the RHS shows that the first integral is of the same form as the volume integrals on
the LHS except the integral has been restricted to one less dimension and the monomial degree
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(a) Borromean (interlocked) rings (b) Gas jet nozzle

Figure 2. Domains generated via constructive solid geometry and multiple implicit functions.

is one more. Hence, the order of accuracy is the same, ((P + 1) + (D − 1) +R = P +D + R).
Using recursion, we can reduce the dimension until D = 1. At this point all the moments can
be computed over Ad because Ad is the intersection of V with a line parallel to the xd axis
and the monomial only has one variable that isn’t constant. The intersection can be found by
using robust 1D root finding algorithms to get the end points of the 1D integral, which is then
computed explicitly.

The second integral on the RHS involves moments over the AEB in the current dimension
but the degree has increased to P + |r|. Thus, they can be computed recursively. The recursion
terminates because as the degree of the monomial moments increases, the dimension and order
of accuracy stays the same. Thus, the value of R (the number of terms in the Taylor series) in
the recursion decreases by |r|. Eventually, there are no terms of the Taylor series on the RHS
so this recursion terminates.

Overall, the algorithm proceeds by setting up the equations to compute the needed moments
over the needed regions as a least squares problem. Then the RHS is recursively computed
recursing in both dimension and monomial degree. Finally, the original least squares problems
are solved for the unknown moments, and these are used in the flux computations. Since the
least squares problems are always well conditioned and the only computations involving the Ω
are the intersections of the Ω with lines parallel to the coordinate axes, this algorithm is very
robust and straightforward to implement.

3. Complex irregular boundaries

In order to construct more complex irregular boundaries, implicit functions can be composed into
more complex implicit functions using constructive solid geometry, CSG. To do so, one must
define the complement, intersection, and union of irregular domains, Ωi, defined by implicit
functions, φi. To this end we use the following correspondences.

Ωcomplement
i ⇔ −φi

Ωintersection ⇔ max
i
φi

Ωunion ⇔ min
i
φi
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Further, coordinate transformations, ψ, of Ω can be implemented as

Ωψ = {x : x ∈ R
D, φ(ψ−1(x)) < 0}.

Examples of ψ include rotations, translations, and scaling. In addition to being straightforward
to implement by using implicit functions, CSG is a very robust and intuitive method for building
complex geometry objects and easily manipulating them (see figure 2).

Once constructed, only the value of the implicit function representing the irregular domain
and its derivatives need to be evaluated in order to compute the necessary moments. This allows
the embedded boundary method to perform efficiently even on workstations.

If good estimates of the bounds of the local Taylor series expansion of the implicit functions
are available, these can be used to dramatically improve performance by subdividing space
recursively and only evaluating the implicit function where an irregular boundary could exist,
i.e., regions where φ(x) could be zero. Thus, the amount of work done is proportional to the
number of cells containing the irregular boundary and not the entire space. This also allows
cells with under resolved geometry to be detected and corrected by adaptively refining these
cells. This has been found to occur routinely when the higher-dimension irregular domains are
restricted to lower dimensions; for example, slices of a well-resolved unit sphere can be circles
with arbitrarily small radii. Once adequate refinement has been done, either the computation
can use the refined computational cells, or they can be coarsened to provide the moments at the
original resolution.

4. Conclusions and future work

It has been shown that finite volume methods for PDE can be done in arbitrary dimension
to arbitrary accuracy in the presence of irregular boundaries by computing moments, integrals
of monomials, over various regions. If the irregular boundary is defined by implicit functions,
computing these moments can be computed using the divergence theorem, Taylor expansions,
least squares, recursion, and 1D root finding. As a result, an explicit representation of the
irregular domain and boundary is never needed nor computed. The resulting computations
are robust and efficient even for complex domains which can be easily defined using implicit
functions and constructive solid geometry.

These methods can be extended to mapped grids by incorporating coordinate mappings in the
flux and moment computations. In addition, these methods can be used in any computational
context where the algorithm can be reduced to the computation of moments over irregular
domains or boundaries, for example, the integration of functions over these regions.
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